Characterizing all trees with locating-chromatic number 3

نویسندگان

  • Edy Tri Baskoro
  • A. Asmiati
چکیده

Let c be a proper k-coloring of a connected graph G. Let Π = {S1, S2, . . . , Sk} be the induced partition of V (G) by c, where Si is the partition class having all vertices with color i. The color code cΠ(v) of vertex v is the ordered k-tuple (d(v, S1), d(v, S2), . . . , d(v, Sk)), where d(v, Si) = min{d(v, x)|x ∈ Si}, for 1 ≤ i ≤ k. If all vertices of G have distinct color codes, then c is called a locating-coloring of G. The locating-chromatic number of G, denoted by χL(G), is the smallest k such that G posses a locating k-coloring. Clearly, any graph of order n ≥ 2 has locating-chromatic number k, where 2 ≤ k ≤ n. Characterizing all graphs with a certain locating-chromatic number is a difficult problem. Up to now, all graphs of order n with locating chromatic number 2, n − 1, or n have been characterized. In this paper, we characterize all trees whose locating-chromatic number is 3. We also give a family of trees with locating-chromatic number 4.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The locating-chromatic number for Halin graphs

Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...

متن کامل

The locating chromatic number of the join of graphs

‎Let $f$ be a proper $k$-coloring of a connected graph $G$ and‎ ‎$Pi=(V_1,V_2,ldots,V_k)$ be an ordered partition of $V(G)$ into‎ ‎the resulting color classes‎. ‎For a vertex $v$ of $G$‎, ‎the color‎ ‎code of $v$ with respect to $Pi$ is defined to be the ordered‎ ‎$k$-tuple $c_{{}_Pi}(v)=(d(v,V_1),d(v,V_2),ldots,d(v,V_k))$‎, ‎where $d(v,V_i)=min{d(v,x):~xin V_i}‎, ‎1leq ileq k$‎. ‎If‎ ‎distinct...

متن کامل

Trees with Certain Locating-Chromatic Number

The locating-chromatic number of a graph can be defined as the cardinality of a minimum resolving partition of the vertex set such that all vertices have distinct coordinates with respect to this partition and every two adjacent vertices in are not contained in the same partition class. In this case, the coordinate of a vertex in is expressed in terms of the distances of to all partition classe...

متن کامل

The Game Chromatic Number of 1-Caterpillars

The game chromatic number of a graph is defined using a two players game. In 1993, Faigle et al. proved that the game chromatic number of trees is at most four. In this paper we investigate the problem of characterizing those trees with game chromatic number three, and setttle this problem for 1-caterpillars.

متن کامل

The Locating-chromatic Number of Disconnected Graphs

The paper generalizes the notion of locating-chromatic number of a graph such that it can be applied to disconnected graphs as well. In this sense, not all the graphs will have finite locating-chromatic numbers. We derive conditions under which a graph has a finite locating-chromatic number. In particular, we determine the locatingchromatic number of a uniform linear forest, namely a disjoint u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EJGTA

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2013